
Horn-Clause Neural Networks

Vojtěch Aschenbrenner1 & Ondřej Kuželka2

1CTU in Prague, 2KU Leuven

A simple FOL-based neural network model – an example program:

1: brightTetrahedron(A,B,C,D) :- brightTriangle(A,B,C), brightTriangle(A,B,D),
brightTriangle(B,C,D), brightTriangle(A,C,D).
1: brightTriangle(X,Y,Z) :- bright(X), bright(Y), bright(Z), edge(X,Y), edge(Y,Z), edge(Z,X).
0.1: brightTriangle(X,Y,Z) :- bright(W), bright(X), bright(Y), bright(Z), edge(X,W), edge(W,Y),
edge(Y,Z), edge(Z,X). /* A rectangle is almost a triangle too :) */
0.1: bright(blue).
1: bright(green).
2: bright(yellow).
2: bright(white).

Semantics:

1. Value of a ground fact is a parameter (the number on the left)
2. Output of a true ground Horn clause C = h :- b

1
,...,b

k
 is given as:

output(C)= sigmoid(value(b
1
)+...+value(b

k
)-k)

3. Output of a false ground clause is 0.
4. Value of a ground atom A with predicate h is given as follows:

- Let Cs ={C
1
,...,C

m
}be the set of all Horn clauses with h in the head.

- Let Gr(C
i
) denote the set of all true groundings of C

i
 with the ground atom A in the head.

- Then
value(A) = sigmoid(w

C1
max

C1 in Gr(C1)
output(C

1
)+...+w

Ck
 max

Ck in Gr(Ck)
output(C

k
)+w

0

A)

5. Value of an atom A is the maximum of the values of its groundings.

Examples of 'brightTetrahedrons(A,B,C,D)':

0

x
1

x
2

x
1
>x

2
>0

Intuitively, we want

this to hold.

This can be seen as a template for feed-forward neural networks.
The ground network can be constructed as follows from a logic program with weights and a
query atom (in practice, we use an optimized algorithm which utilizes caching, branch-and-
bound, forward-checking etc., this is just for illustration):

Procedure constructNetworkForClause(C = h:-b
1
, …, b

k
)

best := NULL
'OuterLoop': For each grounding θ of C

node := a neuron with no inputs and bias equal to -k
For i = 1, …, k

subnetwork = ConstructNetworkForAtom(bθ
i
)

If subnetwork == NULL Or subnetwork.evaluate() == 0
Continue to 'OuterLoop'

Else

Connect subnetwork to node (weight 1)
EndIf

EndFor

If node is better than best
best := node

EndIf
EndFor
Return best

Procedure constructNetworkForGroundAtom(a =
p(c1,...,ck)

node := a neuron with no inputs and bias w
0

p

For each clause C = p(X1,...,Xk) :- b1, ..., b_m
Let θ be minimal such that p(X1,...,Xk)θ =

p(c1,...,ck)
subnetwork = constructNetworkForClause(C)
If subnetwork.evaluate() != 0

Connect subnetwork to node with the weight
specified for C in the program

EndIf
EndFor
Return node

Parameter learning:

Parameter learning is done by repeating the following steps:

1. Construct neural networks for every program H+e
i
 where H is a hypothesis e

i
 is a learning

example
2. Check if the stopping criterion is met and if so, finish.
3. Perform online backpropagation for a given number of steps for each of the networks
(updating the shared weights – note that the networks for different examples in the dataset
can be different but they share some weights).

References:
V. Aschenbrenner, (supervisor O. Kuzelka): Deep Relational Learning with Predicate Invention,
MSc Thesis, CTU in Prague, 2013

Acknowledgement:
Part of this work was done while VA and OK were with CTU in
Prague. OK is supported by Jan Ramon's ERC Starting Grant
240186 ’MiGraNT.

Some preliminary experiments:

Experiments were performed on chemical data. The
structure was selected so that the program would have
to induce soft clusterings of atom and bond types
relevant for the respective datasets.

w
toxic1

: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg2(B2).
w

toxic2
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg3(B2).
w

toxic3
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg2(B1), bg3(B2).
…
...
w

atg11
: atg1(X) :- atm(X,carbon)

w
atg12

: atg1(X) :- atm(X,hydrogen)

w
atg13

: atg1(X) :- atm(X,nitrogen)

…
...
w

atg21
: atg2X) :- atm(X,carbon)

w
atg22

: atg2(X) :- atm(X,hydrogen)

w
atg23

: atg2(X) :- atm(X,nitrogen)

…
…
...quite large network!

Already with this simple model, we were able to obtain
competitive accuracies to nFOIL for PTC and
Mutagenesis.

Future work:

1. Experiments with datasets where the ability to
construct useful soft concepts (clusters) is expected to
be useful

2. Structure learning

3. Make it deep

	Slide 1

